You are here : Home > Research entities > DMTS > Molecular engineering for Heal ... > Metalloprotease functions

Laboratory | Chemistry | Medical imaging | Cell and molecular imaging

Metalloprotease functions

Team projects

Many project funded

Published on 27 November 2017
Schéma 8 : Funded Projects based on compound RXP470.1

Imagerie de la plaque instable (Contrat NIH, collaboration avec l’université de Yale, Dr M. Sadeghi).
Imaging of unstable plaque (NIH Contract collaboration with Yale University, Dr. Sadeghi).
From RXP470.1 compound, various imaging agents can be developed (Fig. 9).

Schéma 9 : principe pour développer des agents de contraste permettant de détecter la MMP-12 dans des plaques d’athérome.

Issuance of anti-inflammatory agents with functionalized nanoparticles by RXP470.1 (Athero-Nano Project LABEX LERMIT).
Nanoparticles that are surface decorated with RXP470.1 compound can be developed to target in the atherome plaque the MMP-12 present at the macrophages surface and thereby allow the local delivery of anti-inflammatory drugs (Fig. 10).

Schéma 10 : principe du ciblage des nanoparticules vers la plaque instable en exploitant le couple RXP470/MMP-12.

Injected into ApoE -/- mice, such nanoparticles can be detected by fluorescence within atheromatous plaques (Fig. 11, collaboration with our LABEX LERMIT colleagues (Prof.E. Fattal, Dr S. Lesieur and Dr. Doris E.).

Schéma 11 : exemple d’une détection par fluorescence d’une nanoparticule portant en surface le composé RXP470.1 et incorporant une Cy5.5 par la détection en fluorescence (FMT 2500 Perkin Elmer).

The RXP470.1 as a new antiviral agent : MMP-12 plays a key role in the response to viral

  • Allowing particularly IFN-alpha secretion
  • inactivating INF-a

Thus, treatment of mice infected with a virus via RXP470.1, preventing INF-a inactivation, leads to a more rapid clearance of virus, indicating that the RXP470.1 compound represents another generic antiviral agent.

Schéma 12 : rôle de la MMP-12 lors d’une infection virale et effet de l’inhibiteur RXP470.1 sur la charge virale chez la souris.

New generation of MMPs inhibitors
The RXP470.1 structure simplification leads to very potent compounds, even in absence of phosphoryl group (compound 14, Fig. 13).

Schéma 13 : vers une génération de nouveaux inhibiteurs de MMPs.

A new mode of interaction
The compound 19 crystallographic structure (Fig.  14) shows that the carboxylate group in the side chain of the glutamate residue is interacting with the zinc atom, behaving as the chelating group in this compound.

Schéma 14 : identification d’un mode d’interaction avec la MMP-12 d’inhibiteur de structure générique Xaa-Glu-NH2.

MMPs active forms Detection
Synthesis inhibitors having photoactivatable chemical groups and radioactive atoms allows forming covalent complexes after irradiation facilitating detection of these complexes (Fig. 15).

Schéma 15 : illustration de la détection de formes actives de MMP-12 par un inhibiteur

Principle of detection from serum albumin functionalized with potent MMPs inhibitors.
Modified "serum albumin" protein is used to capture the MMPs active forms, which can be identified with a secondary antibody (Figure 16).

Schéma 16 : principe de tests « type bandelette ou Elisa » reposant sur l’utilisation de la sérum albumine préalablement modifiée avec un inhibiteur puissant et large spectre des MMPs.

Halogenated operating in the development of MMPs selective ligands
The use of halogen (F, Cl, Br and I) to control the selectivity of MMPs substrates, in particular vis-à-vis the MMP-9 (Fig. 17).

Schéma 17 : influence de la position P1’ et de la nature de l’halogène dans une série de substrats.

X-bond interaction
The crystal structure analysis allows to detect the formation of an interaction between iodine and a carbonyl group of the protein involving a water molecule, X-bond interaction type (Fig. 18).

Schéma 18 : illustration des interactions générées dans la MMP-9 au niveau de la cavité S1’ par les résidus Phe-I et Phe-F de substrats (structures cristallines).

Study of the carbon nanotubes translocation, 14Carbone labeled
After pulmonary delivery of nanotube to mice can be observed after several months translocation of 14C nanotubes in various organs through the use of the radioimaging (Fig.  19).

Schéma 19 : exemple d’une coupe full-body d’une souris 12 mois après une exposition pulmonaire par des nanotubes radiomarqués au 14C. La présence d’un signal de radioactivité au delà du poumon démontre la translocation des nanotubes de cet organe vers d’autres organes (foie, rate et moelle osseuse), une observation démontrant la capacité de telles nanoparticules à franchir la barrière air/sang.

Project microfluidics in partnership with the CEA Material Sciences Directorate
In the context of CEA's TECSAN and of the DigiDiag program Investments for the Future program, the laboratory has developed in close collaboration with the group of F. Malloggi (DSM/UMR 3299 CEA/CNRS NIMBUS-LIONS), a microfluidic chip for proteomics studies.